**USN** 



# Third Semester B.E. Degree Examination, Aug./Sept. 2020 Additional Mathematics - I

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

### **Module-1**

1 Find the modulus and amplitude of,  $1 + \cos \alpha + i \sin \alpha$ (06 Marks)

b. Express the complex number  $\frac{(1+i)(2+i)}{(3+i)}$  in the form a + ib. (07 Marks)

Find a unit vector normal to both the vectors 4i - j + 3k and -2i + j - 2k. Find also the sine of the angle between them. (07 Marks)

2 a. Show that 
$$\left[\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right]^n = \cos n\left(\frac{\pi}{2}-\theta\right)+i\sin n\left(\frac{\pi}{2}-\theta\right)$$
. (06 Marks)

b. If 
$$\overrightarrow{A} = i - 2j - 3k$$
,  $\overrightarrow{B} = 2i + j - k$ ,  $\overrightarrow{C} = i + 3j - k$   
find (i)  $(\overrightarrow{A} \times \overrightarrow{B}) \times (\overrightarrow{B} \times \overrightarrow{C})$  (ii)  $\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C})$  (07 Marks)

c. Show that 
$$\begin{bmatrix} \vec{a} \times \vec{b}, \ \vec{b} \times \vec{c}, \ \vec{c} \times \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a}, \vec{b}, \vec{c} \end{bmatrix}^2$$
. (07 Marks)

3 a. If 
$$y = (x^2 - 1)^n$$
 then prove that  $(1 - x^2)y_{n+2} - 2xy_{n+1} + n(n+1)y_n = 0$ . (06 Marks)

Find the pedal equation of the curve  $r^m = a^m (\cos m\theta + \sin m\theta)$ (07 Marks)

Show that the following curves intersect orthogonally  $r = a(1 + \cos \theta)$ ,  $r = b(1 - \cos \theta)$ . (07 Marks)

a. Show that  $\sqrt{1+\sin 2x} = 1+x-\frac{x^2}{2}-\frac{x^3}{6}+\frac{x^4}{24}$ ..... using Maclaurin's series expansion.

(06 Marks) b. If  $u = e^{ax + by} f(ax - by)$ , prove that  $b \frac{\partial u}{\partial x} + a \frac{\partial u}{\partial y} = 2abu$ . (07 Marks)

c. Find 
$$\frac{\partial(u, v, w)}{\partial(x, y, z)}$$
 where  $u = x^2 + y^2 + z^2$ ,  $v = xy + yz + zx$ ,  $w = x + y + z$ . (07 Marks)

Obtain a reducation formula for  $\int \cos^n x dx$ 

**(06 Marks)** 

b. Evaluate 
$$\int_{0}^{2} \frac{x^4}{\sqrt{4-x^2}} dx$$
. (07 Marks)

c. Evaluate 
$$\int_{0}^{a} \int_{0}^{x+y+z} dz dy dx$$
. (07 Marks)



## 17MATDIP31

OR

6 Obtain a reducation formula for  $\int \sin^n x \, dx$ .

(06 Marks)

Evaluate  $\int_{1}^{1} \int_{1}^{1-y^2} x^3 y \, dx dy.$ 

(07 Marks)

c. Evaluate  $\int_{-c-b-a}^{c} \int_{-a}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$ .

(07 Marks)

### Module-4

- 7 A particle moves along the curve  $x = 1 - t^3$ ,  $y = 1 + t^2$  and z = 2t - 5.
  - Determine its velocity and acceleration.
  - Find the components of velocity and acceleration at t = 1 in the direction 2i + j + 2k.
  - Find the directional derivative of,  $\phi = x^2yz + 4xz^2$  at (1, -2, -1) along 2i j 2k. (07 Marks)
  - If  $\overrightarrow{F} = (x + y + az)i + (bx + 2y z)j + (x + cy + 2z)k$  find a, b, c such that  $\overrightarrow{curl F} = 0$  and then find  $\phi$  such that  $F = \nabla \phi$ . (07 Marks)

- If  $\overrightarrow{r} = xi + yj + zk$  and  $r = |\overrightarrow{r}|$  prove that  $\nabla(r^n) = nr^{n-2} \cdot \overrightarrow{r}$ (06 Marks)
  - b. If  $\vec{F} = (x + y + 1)\vec{i} + \vec{j} (x + y)\vec{k}$  show that  $\vec{F}$ .curl  $\vec{F} = 0$ . (07 Marks)
  - c. Show that  $\vec{F} = (y+z)i + (z+x)j + (x+y)k$  is irrotational. Also find a scalar function  $\varphi \ \ \text{ such that } \stackrel{\rightarrow}{F} = \nabla \varphi \, .$ (07 Marks)

a. Solve:  $\frac{dy}{dx} = \frac{y - x}{v + x}$ .

(06 Marks)

b. Solve:  $(y^3 - 3x^2y)dx - (x^3 - 3xy^2)dy = 0$ .

(07 Marks)

(07 Marks)

OR

c. Solve:  $xy(1 + xy^2)\frac{dy}{dx} = 1$ . 10 a. Solve:  $\frac{dy}{dx} + y \cot x = \cos x$ .

(06 Marks)

b. Solve:  $(4xy + 3y^2 - x)dx + x(x + 2y)dy = 0$ . c. Solve:  $\frac{dy}{dx} = \frac{x + 2y - 3}{2x + y - 3}$ .

(07 Marks)

(07 Marks)